Package ‘hit’

November 17, 2016

Type Package
Title Hierarchical Inference Testing
Description Hierarchical inference testing (HIT) for (generalized) linear models with correlated covariates applicable to high-dimensional settings.
Version 0.4.0
URL https://github.com/QTCAT/hit
BugReports https://github.com/QTCAT/hit/issues
Depends R (>= 3.0.0)
Imports stats, parallel, Rcpp (>= 0.11.0), glmnet, speedglm
Suggests testthat
LinkingTo Rcpp
License GPL (>= 2)
RoxygenNote 5.0.1
NeedsCompilation yes
Author Jonas Klasen [aut, cre]
Maintainer Jonas Klasen <qtcat@gmx.de>
Repository CRAN
Date/Publication 2016-11-17 18:33:54

R topics documented:

hit-package .. 2
as.hierarchy .. 2
fast.anova .. 3
hit .. 4
names.hierarchy .. 6
reorder.hierarchy 6
summary.hit ... 7

Index 8
hit-package
Hierarchical Inference Testing

Description

Hierarchical inference testing (HIT) for (generalized) linear models with correlated covariates applicable to high-dimensional settings.

Author(s)

Jonas Klasen

as.hierarchy
Hierarchy Structure

Description

Stores variable indexes of clustering hierarchies in a fast accessible manner.

Usage

```
as.hierarchy(x, max.height, height, names, ...)
```

Arguments

- **x**: A S3 object e.g. from hclust or dendrogram.
- **max.height**: Is the maximal height below the height of the global node which is considered.
- **height**: A vector of heights at which nodes are grouped.
- **names**: Variable names in the order in which the indexes should be assigned to the variables.
- **...**: Further arguments.

Details

For the HIT algorithm it is important to have the hierarchical clustering structure in a fast accessible format. This is provided by the hierarchy object generated with this function.
fast.anova

Examples

```r
##
set.seed(123)
n <- 80
p <- 90
# x with correlated columns
corMat <- toeplitz((p:1/p)^3)
corMatQ <- chol(corMat)
x <- matrix(rnorm(n * p), nrow = n) %*% corMatQ
colnames(x) <- paste0("x", 1:p)
# hierarchy
hc <- hclust(dist(t(x))
 hier <- as.hierarchy(hc)
```

fast.anova *Fast ANOVA*

Description

A fast sequential analysis of variance (ANOVA). Mainly developed for internal use.

Usage

```r
fast.anova(x, y, assign = NULL, family = gaussian(), test = c("LRT", "F"))
```

Arguments

- **x** Design matrix of dimension \(n \times p \).
- **y** Response vector of observations of length \(n \).
- **assign** Integer vector assigning columns to terms can be also given as \(x \) attribute in which case the argument is ignored. If an intercept exist it is expected to be the first column in \(x \) and it has to be specified by a '0' in this vector. For details about **assign** see `model.matrix`.
- **family** A description of the error distribution and link function to be used in the model. For GLMs this can be a character string naming a family function or the result of a call to a family function. (See `family` for details of family functions.)
- **test** The name of the test either 'LRT' (default) for likelihood ratio test or 'F' for F test.

See Also

`lm`, `anova`, and `aov`.
Examples

```
y <- rnorm(n = 100)
x <- matrix(data = rnorm(1000), nrow = 100)
a <- 1:10
fast.anova(x = x, y = y, assign = a)
```

Hierarchical Inference Testing

Description

Hierarchical inference testing for linear models with high-dimensional and/or correlated covariates by repeated sample splitting.

Usage

```
hit(x, y, hierarchy, family = "gaussian", B = 50, p.samp1 = 0.5,
    nfolds = 10, overall.lambda = FALSE, lambda.opt = "lambda.1se",
    alpha = 1, gamma = seq(0.05, 0.99, length.out = 100), max.p.esti = 1,
    mc.cores = 1L, trace = FALSE, ...)
```

Arguments

- **x** Design matrix of dimension $n \times p$, without intercept. Variables not part of the dendrogram are added to the HO-model, see Details below.
- **y** Quantitative response variable dimension n.
- **hierarchy** Object of class `as_hierarchy`. Must include all variables of `x` which should be tested.
- **family** Family of response variable distribution. Either `y` is "gaussian" or "poisson" in which case `y` must be a vector or it is "binomial" distributed and is either a vector of zeros and ones, factor with two levels, or a two-column matrix of counts or proportions. The second column is treated as the target class. For a factor, the last level in alphabetical order is the target class. For "binomial" if `y` is presented as a vector, it will be coerced into a factor.
- **B** Number of sample-splits.
- **p.samp1** Fraction of data used for the LASSO. The hierarchical ANOVA testing uses $1 = p.samp1$.
- **nfolds** Number of folds (default is 10). See `cv.glmnet` for more details.
- **overall.lambda** Logical, if true, lambda is estimated once, if false, lambda is estimated for each sample split.
- **lambda.opt** Criterion for optimum selection of cross-validated lasso. Either "lambda.1se" (default) or "lambda.min". See `cv.glmnet` for more details.
- **alpha** A single value in the range of 0 to 1 for the elastic net mixing parameter.
hit

gamma Vector of gamma-values.

max.p.esti Maximum alpha level. All p-values above this value are set to one. Small max. p. esti values reduce computing time.

mc.cores Number of cores for parallelising. Theoretical maximum is 'B'. For details see mclapply.

trace If TRUE it prints current status of the program.

... Additional arguments for cv.glmnet.

Details

The H0-model contains variables, with are not tested, like experimental-design variables. These variables are not penalised in the LASSO model selection and are always include in the reduced ANOVA model.

References

Examples

```r
# Simulation:
set.seed(123)
n <- 80
p <- 82
## x with correlated columns
corMat <- toeplitz((p:1/p)^2)
corMatQ <- chol(corMat)
x <- matrix(rnorm(n * p), nrow = n) %*% corMatQ
colnames(x) <- paste0("x", 1:p)
## y
mu <- x[, c(5, 10, 72)] %*% c(2, -2, 2)
y <- rnorm(n, mu)
## clustering of the columns of x
hc <- hclust(dist(t(x)))
# HIT with AF
out <- hit(x, y, hc)
summary(out)
```
names.hierarchy Names of Hierarchy

Description

Names of variables of an hierarchy.

Usage

```r
## S3 method for class 'hierarchy'
names(x)
```

Arguments

- `x`: A `as.hierarchy`.

reorder.hierarchy Reorder Hierarchy

Description

Reorder indexes according to a vector of names.

Usage

```r
## S3 method for class 'hierarchy'
reorder(x, names, ...)
```

Arguments

- `x`: A `as.hierarchy`.
- `names`: Variable names in the order in which the indexes should be assigned to the variables.
- `...`: Further arguments passed to or from other methods (not used).
Summary

hit

Summary of HIT

Description

Significant clusters at alpha threshold.

Usage

```r
## S3 method for class 'hit'
summary(object, alpha = 0.05, max.height, ...)
```

Arguments

- `object` A *hit* object.
- `alpha` A alpha significance threshold.
- `max.height` max. Height to consider.
- `...` Further arguments passed to or from other methods (not used).
Index

anova, 3
aov, 3
as.hierarchy, 2, 4, 6

cv.glmnet, 4, 5

family, 3
fast.anova, 3

HIT (hit-package), 2
hit, 4, 7
hit-package, 2

lm, 3

mclapply, 5
model.matrix, 3

names.hierarchy, 6
reorder.hierarchy, 6

summary.hit, 7