KRLS: Kernel-based Regularized Least squares (KRLS)

Package implements Kernel-based Regularized Least Squares (KRLS), a machine learning method to fit multidimensional functions y=f(x) for regression and classification problems without relying on linearity or additivity assumptions. KRLS finds the best fitting function by minimizing the squared loss of a Tikhonov regularization problem, using Gaussian kernels as radial basis functions. For further details see Hainmueller and Hazlett (2014).

Version: 0.3-5
Suggests: lattice
Published: 2013-12-20
Author: Jens Hainmueller (Stanford) Chad Hazlett (MIT)
Maintainer: Jens Hainmueller <jhain at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: KRLS results


Reference manual: KRLS.pdf
Package source: KRLS_0.3-5.tar.gz
MacOS X binary: KRLS_0.3-5.tgz
Windows binary:
Old sources: KRLS archive

Reverse dependencies:

Reverse suggests: fscaret