Package ‘JOP’

February 19, 2015

Type Package
Title Joint Optimization Plot
Version 3.6
Date 2013-08-16
Author Sonja Kuhnt and Nikolaus Rudak
Maintainer Nikolaus Rudak <rudak@statistik.tu-dortmund.de>
Depends Rsolnp, dglm

Description JOP is a tool for simultaneous optimization of multiple responses and visualization of the results. The visualization is done by the joint optimization plot introduced by Kuhnt and Erdbruegge (2004).

License GPL (>= 2)
LazyData Yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-08-16 10:17:21

R topics documented:

datax ... 2
datay ... 2
JOP ... 3
locate ... 5
plot.JOP .. 7

Index 9
datax

Examplary dataset containing parameter settings

Description

dataset coming from a sheet metal forming process

Usage

`data(datax)`

Format

Table containing parameter settings, X1 and X2

References

datay

Examplary dataset containing Responses

Description

dataset coming from a sheet metal forming process

Usage

`data(datay)`

Format

Table containing responses, Y1 and Y2.

References

Main function to minimize the risk function of a sequence of cost matrices

Description

JOP calculates optimal design parameters associated with a given sequence of cost matrices based on the minimization of a risk function introduced by Pignatiello (1993). Furthermore, JOP visualizes the optimal design parameters and the appropriate predicted responses using the joint optimization plot introduced by Kuhnt and Erdbruegge (2004).

Usage

JOP(datax, datay, tau = "min", Wstart = -5, Wend = 5, numbW = 10, d = NULL, optreg = "sphere", Domain = NULL, form.mean = NULL, form.disp = NULL, family.mean = gaussian(), dlink = "log", mean.model = NULL, var.model = NULL, joplot = FALSE, solver = "solnp")

Arguments

datax data set with parameter settings from an experimental design (data.frame). Columns have to be named.
datay data set with responses resulting from an experimental design (data.frame). Columns have to be named.
tau list of target values or single character value for the corresponding responses, where also "min" for minimization or "max" for maximization is possible. If tau="min" or tau="max", then all responses are minimized or maximized.
Wstart value to calculate the sequence of weight matrices (see Details)
Wend value to calculate the sequence of weight matrices (see Details)
umbW value to calculate the sequence of weight matrices (see Details)
d a vector with values to calculate the sequence of weight matrices (see Details)
optreg User can choose the Optimization region.
 optreg="box": box constraints
 optreg="sphere": sphere
Domain box constraints. Column 1 for lower contraints and Column 2 for upper contraints. Row i corresponds to Parameter i.
form.mean list of formulas for mean of each response
form.disp list of formulas for dispersion of each response
family.mean family for the mean
dlink list of names of link functions for the dispersion models
mean.model list of functions that model the mean for the corresponding response
var.model list of functions that model the variance for the corresponding response
joplot logical, if TRUE then the joint optimization plot is displayed.
solver Default is "solnp" for three different starting points. Alternatively, "gosolnp" is especially recommended for complex programs.
Details

The main function JOP is a package for multiresponse optimization which aims to minimize a risk function for a prespecified sequence of cost matrices. This sequence of cost matrices is specified by the arguments Wstart, Wend, numbW and d. The user can plug in target values for the responses or set to the target value to "min" or "max" in order to minimize or maximize the corresponding response.

JOP needs models for the mean and dispersion of each response which can be plugged in by means three different possibilities.

- First, the user can pass the models for mean and dispersion as lists of functions in the parameter vector through the arguments var.model and mean.model.
- Secondly, the user can plug in a list of formulas for each response for the mean and dispersion via the arguments form.mean and form.disp. Furthermore, a suitable link and distribution assumption can be specified both for the mean and dispersion.
- Finally, if the user does not plug in neither formulas nor models then JOP calculates automatically double generalized linear models by means of the function dglm from package dglm. Furthermore, JOP performs a backward selection, starting from the full model with main effects, interactions and quadratic terms, and afterwards dropping the least significant covariate in each step.

The data sets datax and datay are needed for model building. Both datax and datay have to be data frames where datax contains an experimental design with settings for each parameter columnwise and datay contains the experimental results columnwise for every response. Additionally, the columns of the data sets should be named, as exemplary demonstrated by data(datax) and data(datay). The optimization is performed by the procedure solnp out of the package Rsolnp. JOP returns an object of class "JOP" which can be visualized by means of plot.JOP. Details on the JOP method can be found in Erdbruegge et al. (2011).

Value

JOP returns a list containing the following elements:

- **Parameters**: The i-th row of this matrix contains the optimal Parameter setting appropriate to the i-th weight matrix.
- **Responses**: The i-th row of this matrix contains the predicted Responses appropriate to the i-th weight matrix.
- **StandardDeviation**: The i-th row of this matrix contains the standard deviation value for each response.
- **OptimalValue**: This vector contains the optimal value of the risk function for each optimal parameter setting.
- **TargetValueJOP**: Contains the target values for the corresponding responses used internally by JOP.
- **TargetValueUSER**: Contains the target values for the corresponding responses specified by the user.
- **DGLM**: If no models assigned then the list DGLM contains the calculated models for the mean and dispersion for every response.
locate

RiskminimalParameters
- Parameters that minimize the squared sum of single risks among all calculated Parameters

RiskminimalResponses
- Responses for the risk minimal parameters

ValW
- Values for Wstart and Wend

d
- Slope vector

numbW
- Number of weight matrices

References

Examples

```r
# Example: Sheet metal hydroforming process
# Run JOP without Model specification

outtest <- JOP(datax = dataxL, datay = datayL, tau = list(PL, PNPU), numbW = 5, joplot = TRUE)
```

Description

The function `locate` allows the user to choose a point as a good compromise on the right plot and `locate` returns the corresponding design parameters.

Usage

```r
locate(x, ncom = 1, xlu = NULL, no.col = FALSE, standard = TRUE, col = 1, lty = 1, bty = "l", las = 1, adj = 0.5, cex = 1, cex.lab = 1, cex.axis = 1, xlab = c("Stretch Vector", "Stretch Vector"), ylab = c("Parameter Setting", "Predicted Response"), lwd = 1,...)
```
locate

Arguments

- `x`: object from JOP
- `ncom`: number of compromises that the user seeks to select, default is 1
- `xlu`: The vector of x-coordinate that indicates where the user assumes a good compromise, see Details
- `no.col`: If TRUE the plot will be gray scaled. Otherwise the plot will be coloured.
- `standard`: If TRUE the standard deviations will be displayed on the right hand plot.
- `col`: Graphical argument, see details.
- `lty`: Graphical argument, see details.
- `xlab`: Graphical argument, see details.
- `ylab`: Graphical argument, see details.
- `bty,las,cex,adj,cex.lab,cex.axis,lwd`: Graphical arguments
- `...`: Further graphical arguments passed to `plot`.

Details

The function `locate` asks the user to choose a compromise on the right hand plot and it displays the nearest calculated points by means of vertical lines. Furthermore it returns the chosen responses together with the corresponding parameters.

Let `nx` be the number of parameters (number of columns of datax) and `ny` be the number of responses (number of columns of datay). Then `col` and `lty` must have length `nx+ny`. Otherwise predefined grey colors (for `no.col=TRUE`) or standard colors 1, 2, ..., `nx+ny` are used. The arguments `xlab` and `ylab` must have length two, where the first entry contains the label for x-axis and y-axis of the left hand plot and the second entry contains the label for x-axis and y-axis of the right hand plot. Additional graphical arguments can be plugged in.

Value

locate returns a list containing the following elements:

- `ChosenResponses`: selected responses by user
- `ChosenParameters`: corresponding selected parameters

Author(s)

Sonja Kuhnt and Nikolaus Rudak

References

plot.JOP

Examples

Example: Sheet metal hydroforming process
outtest <- JOP(datax = datax, datay = datay, tau = list(0, 0.05), numbw = 5)

Location of points
locate(outtest, xlu = c(3, 4))

plot.JOP

Displaying the Joint Optimization Plot

Description

The function plot.JOP takes the output produced by JOP and returns the joint optimization plot.

Usage

S3 method for class 'JOP'
plot(x, no.col = FALSE, standard = TRUE, col = 1, lty = 1, bty = "l", las = 1, adj = 0.5, cex = 1, cex.lab = 1, cex.axis = 1,
xlab = c("Stretch Vector", "Stretch Vector"),
ylab = c("Parameter Setting", "Predicted Response"), lwd=1,...)

Arguments

x object from JOP

no.col If TRUE the plot will be gray scaled. Otherwise the plot will be coloured.

standard If TRUE the standard deviations will be displayed on the right hand plot.

col Graphical argument, see details.

lty Graphical argument, see details.

xlab Graphical argument, see details.

ylab Graphical argument, see details.

bty, las, cex, adj, cex.lab, cex.axis, lwd

Graphical arguments

... Further graphical arguments passed to plot.
Details

Let n_x be the number of parameters (number of columns of datax) and n_y be the number of responses (number of columns of datay). Then col and lty must have length n_x+n_y. Otherwise predefined grey colors (for no.col=TRUE) or standard colors 1, 2, ..., n_x+n_y are used. The arguments xlab and ylab must have length two, where the first entry contains the label for x-axis and y-axis of the left hand plot and the second entry contains the label for x-axis and y-axis of the right hand plot. Additional graphical arguments can be plugged in.

References

Examples

```r
# Example: Sheet metal hydroforming process
outtest <- JOP(datax = dataxL, datay = datayL, tau = list(P, L, PN, PU), numbw = U)

# Several graphical parameters can be plugged in
plot(outtest, col = 5:8)
```
Index

+Topic datasets
 datax, 2
 datay, 2

datay, 2
datay, 2
dglm, 4

family, 3
JOP, 3
locate, 5
plot, 6, 7
plot.JOP, 4, 7

solnp, 4